e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject:Mathematics

Topic:Homomorphism of group

# **HOMOMORPHISM**

### Definition and Examples

#### Definition 4

A map  $\phi$  of a group G into a group G' is a homomorphism if the homomorphism property  $\phi(ab) = \phi(a)\phi(b)$  holds for all  $a, b \in G$ .

#### Remark.

For any groups G and G', there is always at least one homomorphism  $\phi: g \to G'$  namely the *trivial homomorphism* defined by  $\phi(g) = e'$  for all  $g \in G$ , where e' is the identity element of G'.

#### **Example**

Let  $\phi: G \to G'$  be a group homomorphism of G onto G'. Then G' will be abelian if G is abelian. To see this, let  $a',b' \in G'$ . Since  $\phi$  is onto, there exists  $a,b \in G$  such that  $\phi(a) = a'$  and  $\phi(b) = b'$ . Then  $a'b' = \phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a) = b'a'$ , where the third equality is due to the fact that G is abelian. This shows that G' is abelian. Thus, this example illustrates how one can get information about G' from a given information about G via a homomorphism  $\phi: G \to G'$ .

### Example

Let  $GL(n, \mathbb{R})$  be the multiplicative group of all invertible  $n \times n$  matrices. Then  $\phi : GL(n, \mathbb{R}) \to \mathbb{R}^*$  defined by  $\phi(A) = det A$ , the determinant of A, for all  $A \in GL(n, \mathbb{R})$  is a homomorphism, since det(AB) = det(A)det(B) and since  $det(A) \neq 0$  for any invertible  $n \times n$  matrix A.

#### **Problem**

Determine whether the given map  $\phi$  is a homomorphism.

- (a) Let  $\phi: \mathbb{Z} \to \mathbb{R}$  under addition be given by  $\phi(n) = n$ .
- (b) Let  $\phi : \mathbb{R} \to \mathbb{Z}$  under addition be given by  $\phi(x) = \text{the greatest integer} \leq x$ .
- (c) Let  $\phi: \mathbb{R}^* \to \mathbb{R}^*$  under multiplication be given by  $\phi(x) = |x|$ .
- (d) Let  $\phi : \mathbb{R} \to \mathbb{R}^*$  where  $\mathbb{R}$  is additive and  $\mathbb{R}^*$  is multiplicative, be given by  $\phi(x) = 2^x$ .

#### Solution.

- (a) It is a homomorphism, because  $\phi(m+n) = m+n = \phi(m) + \phi(n)$ .
- (b) It is not a homomorphism, because  $\phi(2.6 + 1.6) = \phi(4.2) = 4$  but  $\phi(2.6) + \phi(1.6) = 2 + 1 = 3$ .
- (c) It is a homomorphism, because  $\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y)$  for  $x, y \in \mathbb{R}^*$
- (d) It is a homomorphism, because  $\phi(x+y)=2^{x+y}=2^x2^y=\phi(x)\phi(y)$  for  $x,y\in\mathbb{R}^*.$

#### **Problem**

Let  $M_n(\mathbb{R})$  be the additive group of all  $n \times n$  matrices with real entries, and let  $\mathbb{R}$  be the additive group of real numbers. Determine whether the given map  $\phi$  is a homomorphism.

(a) Let  $\phi: M_n(\mathbb{R}) \to \mathbb{R}$  be given by  $\phi(A) = det(A)$ , the determinant of  $A \in M_n(\mathbb{R})$ .

(b) Let  $\phi: M_n(\mathbb{R}) \to \mathbb{R}$  be given by  $\phi(A) = tr(A)$ , the trace of  $A \in M_n(\mathbb{R})$ . (The trace of A, tr(A) is the sum of the elements on the main diagonal of A.)

## Solution.

(a) No, it is not a homomorphism. Let n = 2 and  $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  and  $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, so that  $A + B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ . We see that  $\phi(A + B) = det(A + B) = det(A + B)$ 

4-1=3, but  $\phi(A)+\phi(B)=det(A)+det(B)=1+0=1$ .

(b) Yes, it is a homomorphism. Let  $A = (a_{ij})$  and  $B = (b_{ij})$  where the element with subscript ij is in the  $i^{th}$  row and  $j^{th}$  column. Then  $\phi(A+B)=tr(A+B)=$ 

$$\sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = tr(A) + tr(B) = \phi(A) + \phi(B).$$