e content for students of patliputra university

B. Sc. (Honrs) Part 2paper

Subject:Mathematics

Topic:Transpose &Inverse of a matrix

Transpose of a matrix

Definition. Given a matrix A, the **transpose** of A, denoted A^T , is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A = (a_{ij})$ then $A^T = (b_{ij})$, where $b_{ij} = a_{ji}$.

Examples.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
,

$$\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}^{\prime} = (7, 8, 9), \qquad \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}^{T} = \begin{pmatrix} 4 & 7 \\ 7 & 0 \end{pmatrix}.$$

properties of transpose

$$\bullet \ (A^T)^T = A$$

•
$$(A + B)^T = A^T + B^T$$

•
$$(rA)^T = rA^T$$

$$\bullet \ (AB)^T = B^T A^T$$

•
$$(A_1A_2...A_k)^T = A_k^T...A_2^TA_1^T$$

•
$$(A^{-1})^T = (A^T)^{-1}$$

Symmetric &Skew-symmetric matri x

DEFINITION. (Symmetric matrix) A real matrix A is called *symmetric* if $A^t = A$. In other words A is square $(n \times n \text{ say})$ and $a_{ji} = a_{ij}$ for all $1 \le i \le n, \ 1 \le j \le n$. Hence

$$A = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right]$$

is a general 2×2 symmetric matrix.

DEFINITION. Skew-symmetric matrix) A real matrix A is called *skew-symmetric* if $A^t = -A$. In other words A is square $(n \times n \text{ say})$ and $a_{ji} = -a_{ij}$ for all $1 \le i \le n, \ 1 \le j \le n$.

REMARK. Taking i=j in the definition of skew-symmetric matrix gives $a_{ii}=-a_{ii}$ and so $a_{ii}=0$. Hence

$$A = \left[\begin{array}{cc} 0 & b \\ -b & 0 \end{array} \right]$$

is a general 2×2 skew–symmetric matrix.

Identity matrix

Definition The *identity matrix*, denoted I_n , is the $n \times n$ diagonal matrix with all ones on the diagonal.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

If A is an
$$m \times n$$
 matrix, then $I_m A = A$ and $AI_n = A$.

If A is a square matrix, then

$$IA = A = AI$$
.

Inverse of a martrix

Given a square matrix A, the *inverse of* A, denoted A^{-1} , is defined to be the matrix such that

$$AA^{-1} = A^{-1}A = I$$

Note that inverses are only defined for square matrices

Note Not all matrices have inverses.

If A has an inverse, it is called *invertible*.

If A is not invertible it is called *singular*.

Theorem. If A is invertible, then its inverse is unique.

Proof. Assume A is invertible. Suppose, by way of contradiction, that inverse of A is not unique, i.e., let B and C be two distinct inverses of Then, by def'n of inverse, we have

$$BA = I = AB$$
 (1)
and $CA = I = AC$. (2)

It follows that

$$B = BI$$
 by def'n of identity matrix
 $= B(AC)$ by (2) above
 $= (BA)C$ by associativity of matrix mult.
 $= IC$ by (1) above
 $= C$. by def'n of identity matrix

Thus, B = C, which contradicts the previous assumption that $B_{7} \Rightarrow \Leftarrow$ So it must be that case that the inverse of A is unique.

Inverse of a 2×2 **matrix:** Consider the special case where A is a 2×2 matrix with $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then A is invertible and its inverse is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

3

Example For $A = \begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix}$, we have

$$A^{-1} = \frac{1}{3} \begin{bmatrix} -3 & -1 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -\frac{1}{3} \\ -1 & -\frac{2}{3} \end{bmatrix}.$$

We can easily check that

$$AA^{-1} = \begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} -1 & -\frac{1}{3} \\ -1 & -\frac{2}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$A^{-1}A = \begin{bmatrix} -1 & -\frac{1}{3} \\ -1 & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Example: Find the inverse of the matrix $A = \begin{bmatrix} -1 & -3 & 1 \\ 3 & 6 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

$$\begin{bmatrix} -1 & -3 & 1 & 1 & 0 & 0 \\ 3 & 6 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 + 3R_1} \begin{bmatrix} -1 & -3 & 1 & 1 & 0 & 0 \\ 0 & -3 & 3 & 3 & 1 & 0 \\ 0 & -3 & 2 & 1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{R_1} \begin{bmatrix} -R_1 \\ R_3 - R_2 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 & -1 & 0 & 0 \\ 0 & -3 & 3 & 3 & 1 & 0 \\ 0 & 0 & -1 & -2 & -1 & 1 \end{bmatrix}$$

$$\xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 & 2 & 2 & 1 & 0 \\ 0 & -3 & 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{3}R_2} \begin{bmatrix} 1 & 0 & 2 & 2 & 1 & 0 \\ 0 & 1 & -1 & -1 & \frac{1}{3} & 0 \\ 0 & 0 & 1 & 2 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{\frac{R_1 - 2R_3}{R_2 + R_3}} \begin{bmatrix} 1 & 0 & 0 & -2 & -1 & 2 \\ 0 & 1 & 0 & 1 & \frac{2}{3} & -1 \\ 0 & 0 & 1 & 2 & 1 & 1 \end{bmatrix}$$

Thus, A is invertible and its inverse is

$$A^{-1} = \begin{bmatrix} -2 & -1 & 2 \\ 1 & \frac{2}{3} & -1 \\ 2 & 1 & -1 \end{bmatrix}.$$

Theorem 11 Given two invertible matrices A and B

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proof: Let A and B be invertible matricies and let C = AB, so $C^{-1} = (AB)^{-1}$.

Consider C = AB.

Multiply both sides on the left by A^{-1} :

$$A^{-1}C = A^{-1}AB = B.$$

Multiply both sides on the left by B^{-1} .

$$B^{-1}A^{-1}C = B^{-1}B = I.$$

So, $B^{-1}A^{-1}$ is the matrix you need to multiply C by to get the identity.

Thus, by the definition of inverse

$$B^{-1}A^{-1} = C^{-1} = (AB)^{-1}$$
.

Example .

1. Find A^{-1} , where

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 5 \\ 3 & 5 & 8 \end{array}\right)$$

Augment with I and row reduce:

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 5 & 0 & 1 & 0 \\ 3 & 5 & 8 & 0 & 0 & 1 \end{pmatrix} \quad R_2 \to R_2 - 2R_1 \\ R_3 \to R_3 - 3R_1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & -1 & -1 & -3 & 0 & 1 \end{pmatrix} \quad R_3 \to R_3 + R_2$$

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 0 & -2 & -5 & 1 & 1 \end{pmatrix} \quad R_3 \to -\frac{1}{2}R_3$$

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5/2 & -1/2 & -1/2 \end{pmatrix} \quad R_1 \to R_1 - 3R_3 \\ R_2 \to R_2 + R_3$$

$$\begin{pmatrix} 1 & 2 & 0 & -13/2 & 3/2 & 3/2 \\ 0 & 1 & 0 & 1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 & 5/2 & -1/2 & -1/2 \end{pmatrix} \quad R_1 \to R_1 - 2R_2$$

$$\begin{pmatrix} 1 & 0 & 0 & -15/2 & 1/2 & 5/2 \\ 0 & 1 & 0 & 1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 & 5/2 & -1/2 & -1/2 \end{pmatrix}$$

So

$$A^{-1} = \frac{1}{2} \begin{pmatrix} -15 & 1 & 5\\ 1 & 1 & -1\\ 5 & -1 & -1 \end{pmatrix}$$