e content for students of patliputra university

B. Sc. (Honrs) Part 1 paper 1

Subject: Mathematics

Title/Heading:Groups:Algebra of sets, De

Morgan's laws

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

Algebra of sets &De Morgan's laws

Example. (Distributivity) Let A, B, and C be sets. Prove that

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

If X and Y are sets, X = Y if and only if for all $x, x \in X$ if and only if $x \in Y$. First, I'll give a formal proof, written as a series of double implications:

I've shown that

$$x \in A \cap (B \cup C) \leftrightarrow x \in (A \cap B) \cup (A \cap C).$$

By definition of set equality, this proves that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Example. (**DeMorgan's Law**) Let A and B be sets. Prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$ and $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Let x be an arbitrary element of the universe.

$$x \in \overline{A \cup B} \quad \leftrightarrow \quad x \notin A \cup B \qquad \text{Definition of complement} \\ \leftrightarrow \quad \neg (x \in A \cup B) \qquad \text{Definition of } \notin \\ \leftrightarrow \quad \neg (x \in A) \land \neg (x \in B) \qquad \text{Definition of } \cup \\ \leftrightarrow \quad \neg (x \in A) \land \neg (x \in B) \qquad \text{DeMorgan's law} \\ \leftrightarrow \quad (x \notin A) \land (x \notin B) \qquad \text{Definition of complement} \\ \leftrightarrow \quad (x \in \overline{A}) \land (x \in \overline{B}) \qquad \text{Definition of complement} \\ \leftrightarrow \quad x \in \overline{A} \cap \overline{B} \qquad \text{Definition of } \cap$$

Therefore, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Example. Let A and B be sets. Prove that $A \cap B \subset A$.

This example will show how you prove a subset relationship.

By definition, if X and Y are sets, $X \subset Y$ if and only if for all x, if $x \in X$, then $x \in Y$.

Take an arbitrary element x. Suppose $x \in A \cap B$ (conditional proof). I want to show that $x \in A$.

 $x \in A \cap B$ means that $x \in A$ and $x \in B$, by definition of intersection. But $x \in A$ and $x \in B$ implies $x \in A$ (decomposing a conjunction), and this is what I wanted to show. Therefore, $A \cap B \subset A$.

By the way, you usually don't write the logic out in such gory detail. The proof above could be shortened to the following.

 $x \in A \cap B$ means that $x \in A$ and $x \in B$, so in particular $x \in A$. Therefore, $A \cap B \subset A$.

The "in particular" substitutes for decomposing the conjunction.

Example. Prove that $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

$$x \in (A - B) \cup (B - A) \leftrightarrow$$

$$x \in (A - B) \lor x \in (B - A) \leftrightarrow$$

$$(x \in A \land x \notin B) \lor (x \in B \land x \notin A) \leftrightarrow$$

$$[x \in A \lor (x \in B \land x \notin A)] \land [x \notin B \lor (x \in B \land x \notin A)] \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in A \lor x \notin A)] \land (x \notin B \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \notin A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \in A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \in A) \leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in B \lor x \in$$

Therefore, $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.