e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject:Mathematics

Title/Heading:Binary operation

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

Binary Operations

Definition. A binary operation * on a set S is a function mapping $S \times S$ into S. For each (ordered pair) $(a,b) \in S \times S$, we denote the element $*((a,b)) \in S$ as a*b.

Example. The easiest examples of binary operations are addition and multiplication on \mathbb{R} . We could also consider these operations on different sets, such as \mathbb{Z} , \mathbb{Q} , or \mathbb{C} .

Note. As we'll see, we don't normally think of subtraction and division as binary operations, but instead we think of them in terms of manipulation of inverse elements with respect to addition and multiplication (respectively).

Example. A more exotic example of a binary operation is matrix multiplication on the set of all 2×2 matrices. Notice that "order matters" (and there is, in general, no such thing as "division" here).

Definition. A binary operation * on a set S is associative if (a*b)*c = a*(b*c) for all $a, b, c \in S$.

Exercise \mathscr{A} . Define * on \mathbb{Q} as a*b=ab+1. Is * associative (prove or find a counterexample)?

Note. We will study several algebraic structures by simply producing the "multiplication table" for the structure. For example, if $S = \{a, b, c\}$ and we have:

$$a*a = b$$
 $a*b = c$ $a*c = b$ $b*a = a$ $b*b = c$ $b*c = b$ $c*a = c$ $c*b = b$ $c*c = a$,

then we represent this binary operation as:

*	a	b	c
a	b	c	b
b	a	c	b
c	c	b	a

Notice that we read this as

(ith entry on left) * (jth entry on top) = (entry in the ith row and jth column). Notice a*b=c and b*a=a, so * is not commutative.

Notice. Binary operation * is commutative if and only if table entries of it are symmetric with respect to the diagonal running from the upper left to the lower right.

Definition ** Let * be a binary operation on set S and let $H \subseteq S$. Then H is closed under * if for all $a, b \in H$, we also have $a * b \in H$. In this case, the binary operation on H given by restricting * to H is the induced operation of * on H.

Example. Let $\mathcal{E} = \{n \in \mathbb{Z} \mid n \text{ is even}\}$ and let $\mathcal{O} = \{n \in \mathbb{Z} \mid n \text{ is odd}\}$. Then, \mathcal{E} is closed under addition (and multiplication). However, \mathcal{O} is NOT closed under addition (but is closed under multiplication).

Example. Consider the set of all 2×2 invertible matrices. The set is closed under matrix multiplication (recall $(AB)^{-1} = B^{-1}A^{-1}$), but not closed under matrix addition.

Definition A binary operation * on a set S is *commutative* if a*b=b*a for all $a,b\in S$.

Example. Matrix mulitplication on the set of all 2×2 matrices is NOT commutative.

Note. When defining a binary operation * on a set S, we must make sure that

- Exactly one element of S is assigned to each possible ordered pair of elements of S (that is, * is defined on all of S and * is "well defined").
- For each ordered pair of elements of S, the value assigned to it is again in S
 (that is, S is closed under *).

Example Define a*b=a/b on $\mathbb{Z}^+=\mathbb{N}=\{n\in\mathbb{Z}\mid n>0\}$. Then \mathbb{N} is not closed under * since, for example, $1*2=1/2\notin\mathbb{N}$.