e-content for students B. Sc.(honours) Part 1paper 1 Subject:Mathematics Topic:Multiplication of two matrices RRS college mokama

Multiplication of two matrices

Def Let $A = [a_{ij}]$ be $m \times n$ matrix and let $B = [b_{jk}]$ be $n \times p$ matrix. Then the product of A and B denoted by AB is defined as the

matrix
$$[c_{ik}]$$
 where $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$.

Obs. : In the above definition A is a $m \times n$ matrix and B is a $n \times p$ matrix and the product is a $m \times p$ matrix. This leads us to the following rule :

If A is a $m \times n$ matrix and B a $n \times p$ matrix, then AB will be a $m \times p$ matrix.

Ex. Find the elements of the product C = AB,

	[1]		3			1	2
where $A =$	5	4	3	2	B =	-2 3	0
	0	1	2	3		3	-2
					the second second	4	3

Here A is a 3×4 matrix and B is a 4×2 matrix. \therefore The product *AB* will be a 3 × 2 matrix.

Now, $c_{11} = \text{sum of the products of the first row of } A$ with the first column of B

$$= 1 \times 1 + 2 \times (-2) + 3 \times 3 + 4 \times (-4)$$

= 1 - 4 + 9 16 10

$$-1 - 4 + 9 - 16 = -10,$$

 c_{12} = sum of the products of the first row of A with the second column of B

$$1 \times 2 + 2 \times 0 + 3 \times (-2) + 4 \times 3$$

$$2+0-6+12=8$$
.

$$c_{21} = 5 \times 1 + 4 \times (-2) + 3 \times 3 + 2 \times (-4)$$
$$= 5 - 8 + 9 - 8 - 2$$

$$c_{22} = 5 \times 2 + 4 \times 0 + 3 \times (-2) + 2 \times 3$$

= 10 + 0 - 6 + 6 = 10
$$c_{31} = 0 \times 1 + 1 \times (-2) + 2$$

$$= -2 + 6 - 12 = -8$$

$$c_{32} = 0 \times 2 + 1 \times 0 + 2 \times (-2) + 3 \times 3$$

$$= 0 + 0 - 4 + 0 = -8$$

=0+0-4+9=5.*c*₁₁ *c*₁₂] [−10 87 Thus C =10

Algebraic laws for multiplication

Associative law If A and B are conformal for the product AB and B and C are conformal for the product BC, then (AB)C = A(BC).

Proof: Let A, B, C be the $m \times n$, $n \times p$ and $p \times q$ matrices and let $A = [a_{ij}]$, $B = [b_{ij}]$, $C = [c_{ij}]$.

Here A, B and C are conformal for the product AB and p

Now
$$(AB) = [a_{ij}] \times [b_{ij}] = \begin{bmatrix} n \\ \sum_{k=1}^{n} a_{ik} b_{kj} \end{bmatrix}$$

= $[\lambda_{ij}]$, say $i = 1, 2, 3, ..., m$
 $j = 1, 2, 3, ..., p$.

We find that (*AB*) i.e., $[\lambda_{ij}]$ is a $m \times p$ matrix and since C is a $p \times q$ matrix; therefore (*AB*) and C are conformal for the product (*AB*)C and (*AB*)C is a $m \times q$ matrix.

Hence
$$(AB)C = [\lambda_{ij}] \times [c_{ij}]$$

$$= \left[\sum_{l=1}^{p} \lambda_{il} c_{lj}\right] = \left[\sum_{l=1}^{p} \left(\sum_{k=1}^{n} a_{ik} b_{kl}\right) c_{lj}\right]; \text{ from (I)}^{\prime}$$

$$= \left[\sum_{l=1}^{p} \sum_{k=1}^{n} a_{ik} b_{kl} c_{lj}\right]; \quad i = 1, 2, 3, ..., m;$$

$$j = 1, 2, 3, ..., q.$$
Again $(BC) = [b_{ij}] \times [c_{ij}] = \left[\sum_{r=1}^{p} b_{ir} c_{rj}\right]$

$$= [\delta_{ij}], \text{ say; } i = 1, 2, 3, ..., n; j = 1, 2, 3, ..., q.$$

We find that (*BC*) i.e., $[\delta_{ij}]$ is a $n \times q$ matrix and since *A* is a $m \times n$ matrix, therefore *A* and (*BC*) are conformal for the product *A*(*BC*) and *A*(*BC*) is a $m \times q$ matrix.

Hence
$$A(BC) = [a_{ij}] \times [\delta_{ij}]$$

$$= \left[\sum_{s=1}^{n} a_{is}\delta_{sj}\right] = \left[\sum_{s=1}^{n} a_{is}\left(\sum_{r=1}^{p} b_{sr}c_{rj}\right)\right]; \text{ from (II)}$$

$$= \left[\sum_{r=1}^{p} \sum_{s=1}^{n} a_{is}b_{sr}c_{rj}\right]; i = 1, 2, 3, ..., n$$

$$j = 1, 2, 3, ..., q.$$
Thus $(AB)C = A(BC).$

We may write (AB)C = A(BC) = ABC.

\$ 5.75

mm,

Distributive law: If A and B are conformal for the product AB, B and C are conformal for addition, then A(B + C) = AB + AC.

Proof: Let A, B, C be the $m \times n$, $n \times p$ and $n \times p$ matrices and let $A = [a_{ij}], B = [b_{ij}], C = [c_{ij}].$

Since B and C are conformal,

: $B + C = [b_{ij}] + [c_{ij}] = [b_{ij} + c_{ij}].$

Now, B + C is a $n \times p$ matrix. Therefore A and B + C are conformal for the product A(B + C).

Hence
$$A(B + C) = [a_{ij}] \times [b_{ij} + c_{ij}]$$

$$= \left[\sum_{k=1}^{n} a_{ik} (b_{kj} + c_{kj}) \right]; i = 1, 2, 3, ... m$$
 $j = 1, 2, 3, ... p$

$$= \left[\sum_{k=1}^{n} a_{ik} b_{kj} + \sum_{k=1}^{n} a_{ik} c_{kj} \right]$$

$$= \left[\sum_{k=1}^{n} a_{ik} b_{kj} \right] + \left[\sum_{k=1}^{n} a_{ik} c_{kj} \right] ...(1)$$

But $AB = [a_{ij}] \times [b_{ij}] = \left[\sum_{k=1}^{n} a_{ik} b_{kj}\right]; i = 1, 2, 3, ... m$ j = 1, 2, 3, ... p

and
$$AC = [a_{ij}] \times [c_{ij}] = \left| \sum_{k=1}^{n} a_{ik} c_{kj} \right|; \quad " \qquad " \qquad ...(2)$$

Therefore from (1) and (2), we have A(B + C) = AB + AC. Similarly, (B + C)D = BD + CD, when D is a $p \times q$ matrix (say) **Cor.** : A(B - C) = AB - AC.