e content for students of patliputra university B. Sc. (Honrs) Part 2paper Subject:Mathematics Topic:Permutations group, cayley's theorem # permutations group We recall that a *permutation of a set* A is a function $\phi : A \to A$ that is both one to one and onto. Consider the operation function composition \circ on the collection of all permutations of a set A (we call this operation as permutation multiplication). If σ and τ are any two permutations of a set A, we denote the composition of σ and τ by $\sigma\tau$ instead of $\sigma \circ \tau$. Note that $\sigma\tau$ is clearly one to one and onto (Prove this!). Thus permutation multiplication is a binary operation on the collection of all permutations of a set A. Remember that the action of $\sigma\tau$ on A is in right- to -left order; i.e., first apply τ , and then σ . ### Theorem . Let A be a nonempty set, and let S_A denotes the collection of all permutations of A. The S_A is a group under permutation multiplication. ## Definition . Let A be the finite set $\{1, 2, 3, ..., n\}$. The group of all permutations of the set A is the **symmetric group on** n **letters**, and is denoted by S_n . Note that S_n has n! elements. # Example 1 Let $A = \{1, 2, 3\}$. Then we list below the 3! = 6 elements of the symmetric group on three letters. $$\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \qquad \mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \qquad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \qquad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$ The multiplication table for S_3 is shown in the table given below. | , h | ρ_0 | ρ_1 | ρ_2 | μ_1 | μ_2 | μ_3 | |----------|----------|----------|----------|----------|----------|----------| | ρ_0 | ρ_0 | ρ_1 | ρ_2 | μ_1 | μ_2 | μ_3 | | ρ_1 | ρ_1 | ρ_2 | ρ_0 | μ_3 | μ_1 | μ_2 | | ρ_2 | ρ_2 | ρ_0 | ρ_1 | μ_2 | μ_3 | μ_1 | | μ_1 | μ_1 | μ_2 | μ_3 | ρ_0 | ρ_1 | ρ_2 | | μ_2 | μ_2 | μ_3 | μ_1 | ρ_2 | ρ_0 | ρ_1 | | μ_3 | μ_3 | μ_1 | μ_2 | ρ_1 | ρ_2 | ρ_0 | From the table, it is clear that this group is **not** abelian. It is interesting to note that there is a natural correspondence between the elements of S_3 and the ways in which two copies of an equilateral triangle with vertices 1, 2, and 3 can be placed, one covering the other with vertices on top of vertices. Because of this fact, S_3 is also the **group** D_3 of symmetries of an equilateral triangle. D_3 is also called the third dihedral group. In this context, the permutations ρ_i corresponds to rotations and μ_i corresponds to mirror images in bisectors of angles. #### Remark. Any group of at most 5 elements is abelian. ### Lemma Let G and G' be groups and let $\phi: G \to G'$ be a one-to-one function such that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. Then the image of G under ϕ , $\phi[G] = \{\phi(g), g \in G\}$, is a subgroup of G' and ϕ provides an isomorphism of G with $\phi[G]$. Proof. Let $x', y' \in \phi[G]$. Then there exists $x, y \in G$ such that $\phi(x) = x'$ and $\phi(y) = y'$. By assumption, $\phi(xy) = \phi(x)\phi(y) = x'y' \implies x'y' \in \phi[G]$. Thus $\phi[G]$ is closed under the operation of G'. Let e' be the identity element in G'. Then, $e'\phi(e) = \phi(e) = \phi(ee) = \phi(e)\phi(e) \implies e' = \phi(e)$ (by right cancellation in G') $\implies e' \in \phi[G]$. Let $x' \in G'$. Choose $x \in G$ such that $\phi(x) = x'$. Note that $e' = \phi(e) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1}) = x'\phi(x^{-1}) \implies x'^{-1} = \phi(x)^{-1} \in \phi[G]$. Thus $\phi[G]$ is a subgroup of G'. Also, ϕ is an isomorphism of G onto $\phi[G]$, because ϕ is a one-to-one map of G onto $\phi[G]$ such that $\phi(xy) = \phi(x)\phi(y), \forall x, y \in G$. The following theorem due to the British mathematician, Arthur Cayley (1821 - 1895) illustrates the importance of group of permutations. # Theorem (Cayley's Theorem) Every group is isomorphic to a group of permutations. Proof. Let G be a group. We show that G is siomorphic to a subgroup of S_G . By above lemma, we need only to show that there exists a one-to-one function $\phi: G \to S_G$ such that $\phi(xy) = \phi(x)\phi(y), \forall x,y \in G$. For $x \in G$, let $\lambda_x : G \to G$ be defined by $\lambda_x(g) = xg, \forall g \in G$. Then λ_x is one-to-one, because if $\lambda_x(a) = \lambda_x(b)$, then xa = xb, so by left cancellation, a = b. Let $c \in G$. Then $x^{-1}c \in G$, and $\lambda_x(x^{-1}c) = x(x^{-1}c) = c$, showing that λ_x maps G onto G. Thus λ_x is a permutation of G. Define $\phi: G \to S_G$ as $\phi(x) = \lambda_x, \forall x \in G$. Suppose that $\phi(x) = \phi(y)$. Then $\lambda_x = \lambda_y$ as functions mapping G into G. In particular $\lambda_x(e) = \lambda_y(e) \implies xe = ye \implies x = y$. Thus, ϕ is one-to-one. It remains only to show that $\phi(xy) = \phi(x)\phi(y)$, i.e. to show that $\lambda_{xy} = \lambda_x\lambda_y$. Let $g \in G$. Then, $\lambda_{xy}(g) = (xy)g$. Also, $(\lambda_x\lambda_y)(g) = \lambda_x(\lambda_y(g)) = \lambda_x(yg) = x(yg)$. Thus by associativity, $\lambda_{xy} = \lambda_x\lambda_y$. This completes the proof.