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Since f(0+0) = f(0 - 0) = f(0), therefore f(x) is continuous at x -
As regards differentiability, we have
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Similarly Lf*(0) does not exist.
Hence f{x) is not differentiable atx = 0,
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Thus Rf'(0) = 1 and Lf '(0) = -1.

Hence f'(0) does not cxist.

Hence f(x) is not differentiable at x = 0.
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Since f(c +OH-f0-0)= .f(":'}. l.hi'ff.'f:'rre f(x)is continuous atx =0,

As regards dilferentiability, we huve
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But as we have shown before that h— 0%}, does not exist.

Hence Rf '(0) doues not exist.
Similarly it can be shown that Lf*(0) does not exist.

Hence the function is not differentiable atx = 0.



