e-content for students

B. Sc.(honours) Part 2 paper 3

Subject:Mathematics

Topic:Solved problems on continuity &

differetiability

RRS college mokama

differentiability

Prove that the function f(x) = |x| is continuous at x = 0 but not differentiable at x = 0.

soln. For continuity of the function at x = 0, we have f(0) = 0

$$f(0+0) = \frac{Lt}{h \to 0} f(0+h) = \frac{Lt}{h \to 0} |0+h| = 0$$

$$f(0-0) = \frac{Lt}{h \to 0} f(0-h) = \frac{Lt}{h \to 0} |0-h| = 0$$

$$f(0+0) = f(0-0) = f(0).$$

Therefore f(x) is continuous at x = 0.

As regards differentiability, we have

Rf'(0) =
$$h \to 0$$
 $\frac{Lt}{h} = \frac{f(0+h) - f(0)}{h}$
= $\frac{Lt}{h \to 0} = 1$;

$$f(x) = 2 + x \text{ if } x \ge 0$$

= 2 - x if x < 0.

Soln. For continuity, we have

$$f(0) = 2$$

$$f(0 + 0) = \int_{h \to 0}^{LL} f(0 + h) = \int_{h \to 0}^{LL} f(h)$$

$$= \int_{h \to 0}^{LL} (2 + h) = 2;$$

$$f(0 - 0) = \int_{h \to 0}^{LL} f(0 - h) = \int_{h \to 0}^{LL} f(-h)$$

$$= \int_{h \to 0}^{LL} (2 - h) = 2.$$

Since f(0 + 0) = f(0 - 0) = f(0), therefore f(x) is continuous at x = 0. As regards differentiability, we have

$$Rf'(0) = \frac{Lt}{h \to 0} \frac{f(0+h) - f(0)}{h} = \frac{Lt}{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= \frac{Lt}{h \to 0} \frac{(2+h) - 2}{h} = 1;$$

$$Lf'(0) = \frac{Lt}{h \to 0} \frac{f(0-h) - f(0)}{-h} = \frac{Lt}{h \to 0} \frac{f(-h) - f(0)}{-h}$$

$$= \frac{Lt}{h \to 0} \frac{(2+h) - 2}{-h} = -1.$$

Since $Rf'(0) \neq Lf'(0)$, therefore the function is not differentiable at x = 0.

Examine the continuity and differentiability of the function

$$f(x) = x \sin \frac{1}{x}; \ x \neq 0$$

$$f(0) = 0$$

at the point x=0.

Soln. We first of all examine the continuity of the function at x = 0. We have,

$$f(0) = 0$$

$$f(0 + 0) = \frac{Lt}{h \to 0} f(0 + h)$$

$$= \frac{Lt}{h \to 0} f(h) = \frac{Lt}{h \to 0} h \sin \frac{1}{h}$$

$$= 0, \text{ since } \left| \sin \frac{1}{h} \right| \le 1;$$

and

$$f(0-0) = \frac{Lx}{h \to 0} f(0-h) = \frac{Lx}{h \to 0} f(-h)$$
$$= \frac{Lx}{h \to 0} h \sin \frac{1}{h} = 0.$$

Since f(0+0) = f(0-0) = f(0), therefore f(x) is continuous at x = 0.

As regards differentiability, we have

$$Rf'(0) = \frac{Lt}{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \frac{Lt}{h \to 0} \frac{h \sin \frac{1}{h}}{h} = \frac{Lt}{h \to 0} \sin \frac{1}{h}$$

which does not exist

Similarly Lf'(0) does not exist.

Hence f(x) is not differentiable at x = 0.

If
$$f(x) = x^2 \sin \frac{1}{x}$$
 when $x \neq 0$
 $f(0) = 0$;

show that f(x) is ε_1 rightons and differentiable at x = 0.

soln. For continuity of the function at x = 0, we have

$$f(0) = 0$$

$$f(0+0) = \frac{Lt}{h \to 0} f(0+h)$$

$$= \frac{Lt}{h \to 0} h^2 \sin \frac{1}{h} = 0; \text{ since } \left| \sin \frac{1}{h} \right| \le 1$$

$$f(0-0) = \frac{Lt}{h \to 0} f(0-h) = \frac{Lt}{h \to 0} h^2 \sin \frac{1}{-h} = 0.$$

$$f(0+0) = f(0-0) = f(0),$$

therefore f(x) is continuous at x = 0.

As regards differentiability, we have

$$Rf'(0) = \frac{Lt}{h \to 0} \frac{f(0+h) - f(0)}{h} = \frac{Lt}{h \to 0} \frac{h^2 \sin \frac{1}{h} - 0}{h}$$
$$= \frac{Lt}{h \to 0} h \sin \frac{1}{h} = 0;$$

and

$$Lf'(0) = \frac{Lt}{h \to 0} \frac{f(0-h) - f(0)}{-h} = \frac{Lt}{h \to 0} \frac{h^2 \sin \frac{1}{-h} - 0}{-h}$$
$$= \frac{Lt}{h \to 0} h \sin \frac{1}{h} = 0.$$

n in plastane politica

Hence Rf'(0) = Lf'(0) and consequently f(x) is differentiable at x = 0.

 Ξ_{x} Examine the continuity and differentiability of the function f(x) if

$$f(x) = x \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}$$
 when $x \neq 0$

$$f(0) = 0.$$

Soln. Let $x \neq 0$.

If $x \neq 0$, then x, $e^{1/x}$ and $e^{-1/x}$ are continuous and differentiable functions and therefore f(x) is continuous and differentiable w_{hen} $x \neq 0$.

Now we test the continuity and differentiability of the function at = 0.

We have,
$$|f(h) - f(0)| = \left| h \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} - 0 \right|$$
 ...(1)

As $e^{1/h}$ and $e^{-1/h}$ are both positive, hence

$$|e^{1/h} - e^{-1/h}| < e^{1/h} + e^{-1/h}$$
.

Hence from (1), $|f(h) - f(0)| \le |h|$.

Hence given any $\varepsilon > 0$, there exists a δ satisfying $0 < \delta < \varepsilon$ such that $|f(h) - f(0)| < \varepsilon$ provided $|h - 0| < \delta$.

Hence f(x) is continuous at x = 0.

Again, for differentiability at x = 0, we have

$$Rf'(0) = \frac{Li}{h \to 0} \frac{f(h) - f(0)}{h}$$

$$= \frac{Li}{h \to 0} \frac{1}{h} \left[h \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} - 0 \right]$$

$$= \frac{Li}{h \to 0} \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}}$$

$$= \frac{Li}{h \to 0} \frac{1 - e^{-2/h}}{1 + e^{-2/h}} = \frac{1 - 0}{1 + 0} = 1.$$

$$Lf'(0) = \frac{Li}{h \to 0} \frac{f(0 - h) - f(0)}{-h} = \frac{Li}{h \to 0} \frac{f(-h)}{-h}$$

$$= \frac{Li}{h \to 0} \frac{e^{-1/h} - e^{1/h}}{e^{-1/h} + e^{1/h}}$$

$$= \frac{Li}{h \to 0} \frac{e^{-2/h} - 1}{e^{-2/h} + 1} = \frac{0 - 1}{0 + 1} = -1.$$

Thus Rf'(0) = 1 and Lf'(0) = -1.

Hence f'(0) does not exist.

Hence f(x) is not differentiable at x = 0.

$$f(x) = x^2 \sin \frac{1}{x}; x \neq 0$$

= 0; x = 0.

is differentiable for every value of x but the derivative is not continuous at x = 0.

soln. Let $x = c \neq 0$. Then in order to determine whether f(x) is differentiable at x = c, we shall need to find

$$\frac{L}{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

Now $f(c+h) = (c+h)^2 \sin \frac{1}{c+h}$ so that

$$\frac{f(c+h) - f(c)}{h} = \frac{(c+h)^2 \sin\frac{1}{c+h} - c^2 \sin\frac{1}{c}}{h}$$

$$= \frac{(c^2 + 2ch + h^2)}{h} \frac{1}{c+h} - \frac{c^2}{h} \frac{1}{c}$$

$$= \frac{c^2}{h} \left\{ \sin\frac{1}{c+h} - \sin\frac{1}{c} \right\} + (2c+h)\sin\frac{1}{c+h}$$

$$= -\frac{c^2}{h} 2\cos\frac{2c+h}{2c(c+h)} \cdot \sin\frac{h}{2c(c+h)} + (2c+h)\sin\frac{1}{c+h}$$

$$= -2c^2 \cos\frac{2c+h}{2c(c+h)} \times \frac{\sin\frac{h}{2c(c+h)}}{\frac{h}{2c(c+h)}} \times \frac{1}{2c(c+h)}$$

$$+(2c+h)\sin\frac{1}{(c+h)}$$

$$\therefore \frac{Lt}{h \to 0} \frac{f(c+h) - f(c)}{h} = -2c^2 \times \cos \frac{2c}{2c^2} \times 1 \times \frac{1}{2c^2} + 2c\sin \frac{1}{c}$$
$$= 2c\sin \frac{1}{c} - \cos \frac{1}{c}.$$

$$f'(c) = 2c\sin\frac{1}{c} - \cos\frac{1}{c} \text{ when } c \neq 0.$$

But
$$\begin{vmatrix} h^2 \sin \frac{1}{h} + h \cos \frac{1}{h} \end{vmatrix} \le \begin{vmatrix} h^2 \sin \frac{1}{h} \end{vmatrix} + \begin{vmatrix} h \cos \frac{1}{h} \end{vmatrix} \\
\le |h^2| + |h| \quad \therefore \quad \left| \sin \frac{1}{x} \right|, \quad \left| \cos \frac{1}{x} \right| \le 1$$

$$\therefore \quad h \to 0 \quad \left| h^2 \sin \frac{1}{h} + h \cos \frac{1}{h} \right| = 0,$$
Thus
$$f(0 - 0) = \lim_{h \to 0} \int f(0 - h) = \lim_{h \to 0} f(-h)$$

$$f(0-C) = \frac{Lt}{h \to 0} f(0-h) = \frac{Lt}{h \to 0} f(-h)$$

$$= \frac{Lt}{h \to 0} \left\{ -h^2 \sin \frac{1}{h} - h \cos \frac{1}{h} \right\}$$

$$= -\frac{Lt}{h \to 0} \left\{ h^2 \sin \frac{1}{h} + h \cos \frac{1}{h} \right\}$$

$$= 0 \text{ as above,}$$

Since f(0+0) = f(0-0) = f(0), therefore f(x) is continuous at x = 0.

As regards differentiability, we have

$$Rf'(0) - \frac{Lt}{h \to 0} \frac{f(C + h) - f(C)}{h}$$

$$= \frac{Lt}{h \to 0} \frac{f(h) - f(C)}{h} = \frac{Lt}{h \to 0} \frac{f(h)}{h}$$

$$= \frac{Lt}{h \to 0} \frac{h^2 \sin \frac{1}{h} + h \cos \frac{1}{h}}{h}$$

$$= \frac{Lt}{h \to 0} \left(h \sin \frac{1}{h} + \cos \frac{1}{h} \right)$$

But as we have shown before that $h \to 0 \cos \frac{1}{h}$ does not exist.

Hence Rf '(0) does not exist.

Similarly it can be shown that Lf'(0) does not exist.

Hence the function is not differentiable at x = 0.