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49 VAN DER WAALS' EQUATION

The gas which conforms to all of the postulates of Kinetic theory
or which obeys Boyle's law and Charles” law Smidly for all values
of temperature and pressure or which strictly follows the general
gas equation (P = wf T Yis called ideal or perfect gas. Actually
no gas 15 ideal or perfect in natwre. Under ordinary conditions,
only those gases nearly behave as ideal or perfect which have
very low boiling points such as nitrogen, hiydrogen, etc.

At low pressure and moderately high tenmaaru:e the-real
gases approach ideal behaviour (see fig ).
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Fig. 4.9 (a) Ideal and real gas, (b) Ideal and real gas (real gaa
is approaching ideal behaviour with rise in temperature) .

It is observed that deviations from gas laws are high under
high pressure and low temperature, van der Waals suggested that

these deviations are due to the following two faulty E&liumptil:;n_li'

in the kinetic theory of gases:

() Actual volume of the gas molecules 15 neghmble as
compared to the total volume of the gas.

{11} Intermolecular attractions are not present in gases,

van der Waals pointed out that in the case of real gascs,
malecules do have a volume and also exert intermolecular
attractions especially when the pressure is high and temperature
is low. He applied two comections:

(a) Volome correction: van der Waals assumed that
murlecules of areal gas are rigid spherical particles which possess
a definite volume. Thus, the volume of a real gas, i e, volume
availabie for compression or movement s, therefore, actual
volume minus the volume nqcupied by gas molecuies, If & is the
effective volume of the molecules per mol of the gas, the wdeai
volume for the gas equation is (" — b)and not ¥, fe.,

corrected volume *¥F, " = F — b for one mole of the gas
- and for n mole of the gas, *F," =V — ub,

b is wermed the excluded volume which is constant and
characteristic for ezch gas. The excluded volume ‘5" 15 actually
four times the actual volume of the gas molecules,

3

where * ' = radius of gas molecule
N = Avogadro’s number

(b) Pressure correction: A malecule in the interior of the
gas iz attracted by other molecules on all sides, These forces,
thus, are not effective, as equel and opposite forces cancel each
other, However, a gas molecule which is just going to sirike the
wall of the vessel experiences an mward pull due to unbalanced
attractive forces., Therefore, it strikes the wall with less
momentum and the observed pressure will be less than the ideal
Pressure, '

b=[im-"]x-w

Pigcas = Pops + F*
where P is the pressure cormection.

Pressure Correction Depends upon Two Factors

(i) The anractive force exerted on a single molecule about to
strike the wall is proportional to the number of molecules per unit
volume tn the bulk of the gas.

(1) The number of malecules striking the wall which is also
proportional o the number of molecules per unit volume of the
EAas. .

Both these factors are proportional to the density of the gas.
Therefore, the attractive force is proportional 1o the square of the
density of the gas.

P o= total atiractive force
e f 2 )

[
ar P = F
where " a” is a constant i:h:pn:nding upon the nature of the gas and ¥
is the volume of 1 mole of the gag.

Thus,  corrected pressure, !m =P+ i

v 2
Making both the corrections, thc general gas eguation
FV = RT may be writien as:

rP+-—-J{i’—b]=RT
L ¥

The equation is called van der Waals® equation. van der Waals'
equation for n moles of the gaﬁ s

.
|P+V—J{P nb)= BT

van der Waals® equation is obeyed by real gases over a wide
range of temperature and pressure and henpe this equation is
called equation of state for the real gases. The constants *g” and
“b”are called van der Waals” constants and they are characteristic
of each gas.



Unit of van der Waals’ Constants
aand b are expressed in terms of the units of P and V.

2
Pressure correction P* = "—f
¥
Y i 4 ! Pressure correction x { Volume)”
n? (Mole)?

Thus, if pressure and volume are expressed in atmosphere
and litre respectively, the umits of constant ‘o’ will be
atmosphere lire * mol ™2,

Sl unit,*a’ = Nm* mol™

‘b ig the effective volume of the pas moleculss in one gram
mole of the gas. Thus, the unit of *b" is the same as for the
volume, i. ¢, litre mol ™'

SIunit,*&" = m’ mol™'

Boyle temperature: The temperature a1 which real pas
behaves like ideal gas and obeys the gas laws over a wide range
of pressure 15 called Boyle temperature * T}, ", At this temperature,
PV remains constant for an appreciable range of pressure

T, =2 = 1

_ kb I,
where, T}, = inversion temperature '
a, b = van der Waals® constanis

v
At Boyle temperature, E:HLF = (rwhen F approaches zero.

410 CRITICAL PHENOMENON AND
LIQUEFACTION OF GASES

During the early part of nineteenth century, a number of gases
such as carbon dioxide, sulphur dioxide, ammonia, ete. were
liguefied by subjecting the gas to low temperature and high
pressure. On cooling, the kinetic energy of the gas molecules
decreases, The slow moving molecules come negrer to each other
due to forces of attraction and, thus, aggregate and are converied
into ligoid. The increase of pressure can also bring the pas
molecules closer ta each other and, thus, is helpful in converting

a gas into liguid. The effect of temperature is rather more
important than that of pressure. The essential conditions for

liquefaction of gases were discovered by Andrews in 1869-as a
result of his study of Pressure-Yolume-Temperature (P4-T)
relationship for carbon dioxide, It was found that above a certain
temperature, it was impossible to liguefy a pas whatever the
preszure was applied. The temperature below which the gas
can be liquefied by the application of pressure alone is called
critical temperature (T, ). The pressure required to liquefy a
gas at this temperature i called the eritical pressure (F_ ). The
volume occupied by one mole of the substance at the critical
temperature and pressure is called critieal volume (7, ).

The results of Andrews experiments are shown in the
following Figure, 4.10(a) in which the pressure 5 plotted against
volume at wvarious temperatures for carbon dioxide. Each
pressure-volume plot is called isotherm.

Letus consider an isotherm at 13.1°C. At low pressure, carbon
dioxide 15 entirely gaseous and is represented by the point {4 }in
the igotherm. On increasing pressure, volume decreases as shown
by the portion AX of the isotherm, approximately in accordance
with Boyle's law. At X, deviations from Boyle's law begin to
appear and the volume decreases rapidly as the gas is converted
intee liquid. At point ¥, catbon dioxide has been completely
liquefied. Between X and ¥, pressure remains constant and both
the gas and liguid phases are in equilibrium. The pressure
cormesponding 1o the horizontal portion XV of the isotherm is the
wvapour pressure of the liguid at the temperature of the isotherm.

The isotherm at 21.5°C shows a similar behaviour except that
liguefaction starts at higher pressure and the horizontal portion
AN iz shorter. As the temperatuie is raised, the honzontal portion
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Fig. 4.10 (a) Isotherms of carbon dioxide
showing critical region

of the 1gotherm becomes smaller and smaller unti] at 31.1°C at
which it reduces to a point P. Point P is called critical point; at
thiz point the boundary between liquid and gas phase {meniscus)
disappears indicating that both the phases have identical
characteristics. Above 31.1°C, there 15 no indication of
liquefaction. The isotherm at critical temperature 31.19C is called
critical isotherm. The tangent at critical point P is horizontal, so
that, % al critical point will he zema. Thus, the PEI:'iTlt P also
called the point of inflection. ) )

It'may be concluded from this explanation that in the area 1o
the left of the dotted line below the critical isotherm, only liquid
carbon dioxide exists. To the right of the dotted line, only paseous

carbon dioxide exiztz. The horizontal portion, within the doted
line shows the equilibrium between gas and liguid phase,

The van der Waals’ Equation and the Critical
Constants

The var der Waals' equation for | mole of a gas 18 given by

_[F‘+ri (V- b)=RT

pi
This equation may be writlen as,
P+l pp- 22 LRy
F 2



or PV iaV-PbV? —ab-Ri1T =0
Dividing above equauon by “P*, we get
bV 2 _ab  RTV 2
P P P

Anangmg in descending powe:s of ¥, we get-

X ;
V- fb+ﬂ|vz,+ﬂ-“_"-o ...(i)
\ <) P R )

Equahon (:) 1s-a cubic equation in ‘¥’ and therefore for any
value of P and 7, it will have three values of ¥, all of which may
be real or one may be real and the other two imaginary. When
pressure versus volume plots are constructed using equation (i)
we get the curves as shown in Fig: 4.10¢(b).

Itis evident from the Fig. 4.10 (b) that the curves at and above
the critical temperature are similar to those in Fig. 4.10 (a).
However, below critical temperature, the horizontal portion
determining the coexistence of gas and liquid is replaced by a (~)
shaped curve ABC in Fig. 4.10(b). Thus, this curve predicts that
there arc three values of V' corresponding to the points 4, Band C.
At the critical point *P’, the three roots of van der Waals' equation
are not only real and positive but also identical and equal to the
critical value V... This condition may be expressed as,

y3 +

=0

Pressure —

Volume =

Fig. 4 10 (b) Isotherms of carbon dioxide aceording to
van der Waals' equation

V=V,

or V-V, =0
A ¥-v) =0 :
Vi-3wylewv2-v)=0 ' e (i)

At critical point, equations (i) and (ii) must be identical. Com-
paring and equating the coefficients of like powers of ¥ gives: .

W.=b+ 5’:‘- ... (iii)

wi=2 iV
P,

A =%b e (V)

In above equations, 7' =T, P = P, atcritical state,

Dividing equation (v) by (iv). we get,
4

v, _b
3
ie., V. =3b (Vi)
Substituting the value of ¥, from eq. (vi) in (v), we get
3p)I=%
(3b) P
P, =2 .. (vii)
27 ° * 3
Finally, substituting the values of P, and ¥, in eq. (i), we get
8a
T.= . {viii)
27Rb

We can cXpncss,thé constants a. b and R in terms of critical
constants as:

'4

A
3

a=3PV}

: A

R=
3T

PV, = -é 3RT. .(ix)

Equation (ix) 1s called equation of critical state, Critical
compressibility factor of a gas may be calculated as,

o

z, = LVe !\27,"2 =0.375
RT. g §a]
\27Rb /
Critical m d‘gmu
Gas P (atm) V, (m’-dl") T (K)
He 23 57.8 53
H, 128" 65 332
Ne 269 417 444
N, 336 90.1 126.1
0, . 503 4.4 }54.5
CO, 2.7 ' . 95.0 L3042
H,0 218.0 556 647.3
NH; 112.0 - T20 4055
CH, 45.8 99.0 191.0
C,Hg 48.2 139.0 305.5
C,H, 50.5 124.0 417.2

4.10.1 EXPERIMENTAL METHODS FOR
LIQUEFACTION OF GASES~

Discovery of critical phenomenon by Andrews in 1869 showed
that gases cannot.be liquefied by the application of pressure
alone; they must first be cooled below their critical temperatures
and then subjected to adequate pressure to cause liquefaction.



Pringiples iwvolved in hquefathmi are:, :

(1} A gas must be at or below its critical nm']peranue Lower
the temperature below the cntical value, easier would be the
liquefaction.

2y The gas is cooled either by doing Exl:e:mal work or by
expanding against the internal forces of molecular attraction.

Laow temperature for Ilquefax:tmn of gases can be achieved by
the following technigues;

{a) Cooling by rapid evapuratmn of a volatile ILqLud

(b} Cooling by Joule-Thomson efTect,

{a}'lejng by Rapid Evaporation of a Vﬂlaﬂl;a i.:lq.ui.d .

Thiz method was first employed by Pictet and Cailletet. An
easily volatile liquid s rapidly evaporated to coal and liguefy a
less volatile liquid. This is the principle underlving the cascade
process [Fig. 4.11{a)] for hiquefaction of O,

Liguid oxygen

Fig. 4.11 {a) Cascade process for the
liguefaction of oxygen

The apparatus consists of three compression pumps A, P, and
Py and three compression chambers A, § and C. The compression
pumps are joined in series, The pump £, compresses methyl
chloride gas which 15 cooled by cold water circulating i owter
jacket of A, As the critical temperature of methyl chlonde is
143°C, it is liguefied at room temperature, The liquid methyl
chloride passes through valve | into the outer jacket of 8 which
is comnected to the suction side of Fi. As a result of reduced
pressure, the  liguid meth:.rl r:.hlunde avaporates and  the
temperaiure in & reaches —90°C.

'T‘he. inner tube of B is filled with ethylene gas whwh is codled
to =90°C, As the critical temperature of ethylene is 10°C, it gets
liquefied and passes through valve F into the outer jacket of C.
Ethylene Tiquid is allowed to evaporate under reduced pressure
with the help of pump /; resulting in a sharp fall in the

{c) Cooling by adiabatic expansion involving mechanical

temperature of oxygen (—118%C) which is filled in the inner tube
of C. Oxypen gets liquefied during the compression stroke of
pumps & and is collected in the Dewar flask D,

{b) Cooling by Joulé-Thomson Effect
- Linde's process for liquefaction of air)

When a compressed gas is allowed to expand into a low
pressure or vacuum under adiabatic conditions, a lowering of
temperature is obsérved. This is known as Joule-Thomson effect.
In the' expansion, molecules of the gas move far apart from one
another. Work is done by the gas molecules 0 overcome
intermolecular forces. Work is done at the cost of the kinetic
energy of gas molecules. Consequently a cooling effect is
ohservied, For each gas, there is a characteristic temperature
above which a gas on expansion shows a heating effect while
below it the gas cools on expansion. This temperature is known
a3 inversion temperature of the gas. This femperature is related
to van der Waals’ cons'l:a.nt aand b by the axpmasmn

T - da
R
where, T, 15 the inversion temperature of the gas,
Gases like H ; and He have low invérsion temperatures {TrH1

~=193 K and T, =33 K) and they show he.atmg effects in

Joule-Thomson expansion under ordinary temperatuce. If these

gases are cooled below their inversion temperatures, they also
show cooling effects.

Flg. 4.11(b) Linde's pmmu far Ilqua'lminn of air

Jnule Thomson effect 35 the basis For hquefaclmnn of air by
Linde's process, The apparatus is shown in Fig, 4.11 (k).

Pure and dry air is compressed to a pressure of about 200 atm.
Any . heat produced during the compression is removed by
passing the pas through a cooling jacket. Compressed air is
allowed to expand suddenly through a nozzle (N to a large

" chamber, where it gets cooled and the pressure reduced 1o about 1

atmosphere, The cooled air is made to pass through the outer tube
and is sent back to the comipressor. The incoming air further conls
on expansion. The process is continued until atr liguefies and 15
collected at the bottorn.



(€) Cooling by Adiabatic Expansion Imolving
Mechanical Work

When a gas iz allowed to expend adiabatically against a
pressure, it does some external work at the cost of its kinetic
energy, due to which its temperature falls, This principle is used
in Claude's process for liquefaction of air. The: apparatus is
shivwn in Fig. 4.11 (¢).

Purg and dry air 15 compressed to about 200 atmospheric
pressure and then passed through the tube T, Compressed air
divides itzelfinto two parts at * 4" and a portion enters through 5O
fitted with an airtight piston. There, it expands, pushing the
piston outward and performs some external work.

Fig. 4.11 (¢) Claude’s apparatus for liquefaction of air

The temperature of the gas thus falls. Coaled air then enters
the chamber at & and cools the incoming air. The temperature of
air is also reduced on expansion due o Joule-Thomson effect.
The process continues until the air 1i.q1icﬁcs.

Tendency of Liquefaction of a Gas

Easily liquefiable gases have g;reatr.'r intermolecular force
which is represented by high value of “a’, Thus, grealer m.l'.l’ he
the value of ‘a’more will be ifs frquqfahi.!i}'

Easily liquefiable pases are:

i 50 = NH > Hy0 » 00y, oo

Dcu'mu;vﬂue o coestanl " a”
[Dreasing endensy of Im-:l'qfnli:x]
Above gases have higher value of ‘o’ as comipared 1o the
_ permanent gases 05, No ,H,, He, Ne, etc.

lﬂmpmﬂﬁllh’ of a Gas

van der Waals’ constant ‘A" represents the excluded volume,
i.e., four times the volume occupied by the gas per mole. Value of
*h' remains constant over a wide range of temperature and
pressure which implies that gas molecules are incompressible.
Compressibility factor: Mathematically, it may be defined as,
_ P
nfRT

The extent to which a real gas departs from ideal behaviour is

expressed in terms of compressibility factor. )
_ Molar volume of real gas (¥, ) PV,

. Molar volume of ideal gas (V) RT

When £= LV, =124 L at 8TP and when £=1,F, =24 L
at STP. ' .

(i) £ = 1for ideal gas. Devianon from the unity indicates extent
of imperfection or non-ideality,

(i) Real gases have Z=1 at low pressure and high
temperature, In this case, the real gas behaves like ideal gas.

(i} £ 1 shows that it is difficult to compress the gas as
compared 1o ideal gas. [t is possible al high pressure. In this case,
repulsive forces dominate.

{iv) Z<| shows thal the gas is easily compressible as
compared, to ideal gas, It is possible at intermediate pressure, In
this case, attractive forces are dominant.

Plots of Compressibility Factor against Pressure

Figure 4.12{b) indicates that an increase in temperature shows
decrease in deviation ideal behaviour, i e, 2 approaches unity
with increase in temperature. ' .

(i) At very low pressure, PV =RT, e, Z=1
(i) At low pressura, PY < RT, le, Z<1
71 i} At high pressure, PV = AT, ie;Z =1

Fig. 4.12(a) Varlation of compressibility factor against
. M -

| .z W' , m;lgas .

Ty Te=Ty=Ty

P—

Fig. 4.12(b} Variation of compressibility factor against
pressure at different temperature

Mote: (i) In case of Hy, Z > 120273 K and 2 increases with the pressure.
When temperaiure is less than 73 K, H, has £ < 1
{1i) For gases uth.er than hydmg:u at 273 K there is decrease in
- L& at initial stage with increase in pressure, value clf Z
approaches a minimum, with ineresse o pressure,



{itr} In case of easily liguefiable gas like CO,, 7 dips largely
below ideal line in low pressure region, see Fig. 4.12 {a).

Specific Heat of Gases

Amount af heat reguived to raise the temperature of | g ofa
substance through 1°C s called i spemﬁr heat., It can be
measired ar constant pressure and at congtant volume,

Molar specific heat, i e, heat required to raise | gram mole of
& substance through 1°C is called heat capacity.

Heat Capacity at Constant Volume

It g dermraurby . It may the et supplied fo one mo.fe ofa
substance fo increase the temperature through 1°C ar constant
vplume,

We know from kinetic theory that,

RT

.F"lV=lr.l:|.l':u':1 ar %J‘?LFN’.‘E =

B2 | L

Thius, kinetic energy £ = -gRT

When lemnperature is raised through l"C then the increase in
kinetic energy may be given as:

Increase in kinetic cnergy = ER{T + )= 3 RT = ';R

Mo, Oy = g R since at constant volume, heat supplied to raise

the temperature 15 used up to increase the kinetic energy only.

3 ) . . .
Cp = ER [for monioatomic gases only, since monoatomic

gases undergo translational motion only]

Cy = ER + x [for di and polyatomic molecules; vibrational

an-d rotational motions also contribute to

the total kinetic energy|

where factor *x” varies from gas to gas and its '-'alue 1 ero for
MOMOAtOTIC Fases.

Heat Capacity at Constant Pressure

It is denoted by Cp; it may be defined as heat supplied to |
male of a substance in order to increase the temperature through
| &t constant pressure,

Heat supplied at constant pressure will be used in:

(1} Increasing kinetic energy, which is equal to %R +x For

, , o . 3
monoatemic gas increase in kinetic energy 15 equal to 5 R when

tempretature is raised through 1*C.
{ii} Doing work due to volume expansion,

We knovw that, PV = RT for | mole of gas ]
When temperature changes to (T + 1), then
PV +AF)=R(T + 1) i)

Subtracting =g, (i} from eq. (i}, we have
PAV = R work duru: due to volwme expansion

Thus, Cp=- F +R= —1'1' for monoatomic 3;&:5

Cr =C,. +R DTCF —-Cp =R (general equation)

Ratio of Molar Heat Capacity
it is denoted as y and it represents atomicity of the gas.
' 5
For monoatomic gas, (7 ) = —— = 2 . I.66
y ;g
2
-
=R
For diatomie gas, (',-'}= te 2 |40
F ER
2
4R
For triatornsic Wr=—t=""=133
B (== =l
Nawwne  CfF, GO CF+E0.0 607 1 Atdimitgty
He 5 ERI) 1.4 1.661 1
M 6,95 4.9 Tl 14 4
0, 682 443 199 14 2
o, &I 671 204 130 3
H;5 62 633 200 1.32 3
Example 46. Specific kear of a monsaromic gar af

constant volune is 3157 kg" K~ and ara CORSIONE Dressure is
5254 kg'l K 7' Calculate the molar mass of the gas.
Cp =M » 525 and Cp = M % 315
where, M is the molecular mass.
Cp-Cp=R(R=8314JK " mol™")
Mx525-Mx315=8314
M (525-315)=8314
_E314

ST 0.0396 kg mol™ =39.6 g mol™

Solution:

Example 47,  Calculate the pressure ecerted by 16 g of
methane in a 250 mL container ar 300 K wsing van der Waals *
eguation. What pressure will be predicred by ideal par equation?

a=2253atm I’ mol 7, b= 00428 L mol ™!
R=0.0821Latm K™ mol ™!
Solution: Given, |6g CH, = :-:: 1 mole
* Applying van der Waals' equation,

IF‘+—]{P’- nhy=nkT
¥

nRT n:g.;:r

¥ -nb) i

Substituting n = |,
R=00821LatmK ' mol ", T=300K; F=0250L
a=2253amL’ mol™; h=00428 L mol™



P I 008212 300 -1x2 ESE—EEEIEMm
(0,250~ 13 0.0428) - (0.250)%

The ideal gas equation predicts that,
p— MRT _1xD0821X300_ o0 oratm
¥ 0.250
Example 48. Calculate the temperatuve of the gas if it
obeys van der Waals'equation from the following data A flask of
2.5 live containg 10 mole of a gas wndér 50 ‘atw. Given
a = 546 atm litre® mal =% and b =003 1 fitre mol ™', -

Solution: (Given that,

- P=50atm; ¥ = 2.5litre, n = 10; @ = 346 atm litre” mol ™
A=0030liremal s R = 0.0821 litre-atm K ' mol 7).

Applying wm der Waals' Equatmn.
2
| P4 —]{T"—nh]= "R
v

y
[P+":;j] (V —nb)
nf _\'
H MJ (2.5=10% 0.031)
e
__ 1000821
WAKTRATIONS OF OBJECTIVE QUESTIONS g

13, At hlgh tl;mp:rﬂtu‘: and low pressure, the van der Waals®
equition is reduced fo:

{a}{P+%JP=RT

or T'=

Z3664K - -

{b];ﬂr’: /T

{:} PV - b) = m*'

¢ .
. {:I}LP+F] fF—bj=RT

. [Ans, [hl] 3 oo’

. [Himt:. At high temperamre and Inw pms-urf: F.is 1arg~e in

comparison 1o i and[ ij is niegligibile in cmmnmn b 7,
Hence, the equation reduces to PV = BT ]

24, The constant*g" in‘van der Waals® equation is maximum in;

{a) He (b1 H;
ey Oy - -{d‘J'NHI-
[Ans. (4}

[Mint: Intesmolecular force ﬁf]"'lH} is maximum, hence its van
der Waals" constant (o) will alse be maximum.]

15, The van :Ie'r Winals" c,qusu:mn for 0.5 mol gas is;

a V-bY_2RT
w(regs) 5T
{m|(F ' %] (2¥ ~b)=RT

{E}LHF]EN 4hy=RT

1h.

7.

28

19,

a ___IIR'F."'
{d}[ -wz] -2A¥ - by
[Ans. (b)]

1 [Hint: [IH g] iV = wb) = ART

: 1 IR0 T A S B RN
an_i.[ 4l"1]x ) _z]—E_RT__-
{“ﬁj‘?" - b)=RT]
van der Waals' constants of two gases X and ¥ are as given:
a (litre-atm mol ) & (litre mol ')
Gas X “56 C0.065
Gas¥ SA.. 0012
What is correct about the two gases?”
(@ T(X)>TA¥) T AX)=T.AF)

{':‘JP'H]I}V{T} id}i"{l"}}V'[X)

[Ams. ()] -

| Himit: GE)."' Gni]"

¥, =3h 3= 0065=0195 3= 0012 =0.036]

Select the correct statements about van der Waals® constarit
' !J': .
. Ttis excluded vuiilme

?_ Its unit is mol lire ™

1. It depends on intermolecular furm:
4. Iz value dcpm:h on molecular size
A2)2,3 - byl 2,4 (e)2,3.4
[Ams. (b))

Gages X', ¥, Z, Pand {? have the van der Waals® constants.“a’
-and "E°{in O35 units) ag shown below:

d) 3,4

X ¥ z P o

a |, 6. . [ R O 11 < o

h 0025 0.15 .1 0.02 L0z}
The gas with the Iml._r.hﬁrt cnl::'.nl tc.mpenh.n‘c 15; )

© [PET (Kerala) 2006]

tay P (b} @ {c] ¥ Wy
{e) & ' e
[Ans. {e)]
[Hint: Critical Tempera:ut-..i" - aa

ZTRb
Grl:n'lr.'r is the value nf(.a.l'b], mare is the t:nnl::al tmnpmaturc
ufg;am
For gas X..Tr will be muximum,
. B T .
T=——
2Rb : .
% e X = S 248: fur dll other gaves, {2 is Tosser]
B Toms T puics,| 7 18 s
At high pressure, van der Waals' equation becomes:
{(DEMT Zilh)
N |
BRI +.=

{a) PV = RT (b} P¥ =

(c) PV =RT - g idy PV =RT + Pb

[Ans." {di]



3
[Hint: [.m a :L] ¥ — nb)=nRT
. E
EP+%} {V - b)=RT for | mol gas
Al }ug;h prEssUre, [P + Fa:.] = P

PV - b)=
P =RT + Fh]

1+ 2238 WS0ME SOLVED ExAMPLES) §85:: .

“Example 49, ' Calculate the total pressure in a W itve
cylinder which confainy 0.4 g afhelium, | 6 g of oxygenand | 4g
af nitrogen af 2777 Alsd caleulate the partial pressure of heliim
gag in the cylinder. Assume ideal behaviowr of gases.

Criven that, R = U082 fitre —atm K 7' mol ™. 11T 1997
Solution: CmT - T
4 |.6
My =—=01 A5, ==—=005
-

my, = 1.4/ 28=0.05
Py uFe=ng xRuT
Py % 10= 011 % 00821 % 300
Pyje = 0.2463 atm
PXV =(ny, +ng, +ny, JRT
P 10= (0.1+ 0.05 + 0.05) x 0.0821x 300
P =0.4926 atm

Example 50.  dn evacwated glass vessel welghs 500 g
wihen empiy, 148.0 g when filled with a ligiid of density 0,98
g.".l_ﬂL" ard 50.5g when filled with an ideal géz.s'_'ﬂ.f Tolmm He ot
0K, Deterniing the molecular weight of the gas. (1T 1998}

Solution:  Mass of liquid = 148 - 50=9% g
. Volume of liquid = -5 = %8 _ 100 mL
' density  0.98
Volume of vessel = Volume of liquid

Mass of pas = 50.5- 30=05g
On applying ideal gas equation, we have,

FV_"‘er
760 E=Exwazmm
760 1000 m
21

Example 51. A wruca!.ﬁunfmvryhnder of height 1.52 m is
Sfinted with a movable piston of negligible mass and thickness. The
fower hall of the cylinder coninins an ideal gas and the upper
half is filled with mevcury. The cylinder is initially ot 300K, When
the temperaiure [s raised hall of the mercury comes out of the
cplinder. Find the temperature assuming the thermal expansion
af mercury to be negligible.

Solation:

L’E cm

T&em

‘l 1'

{Initial state)

{After heating)

At initial stage:

Pressure of gas = Pmssurc ung + Pressure nf
. atmospheric air
=76+ Th=
T=300K
¥V=F {2 where, V| is volume ui':,ylmder
A final stage afier heating::

152 em

Pressure ofg;ns Pressure of Hg + Pressure of
atmospheric air

=38+ T6=114cm

3,

V= L T=17
Applying gas equation, we have
152 F) 114 {3F, /4]
DT T
T= 114 = 3 22 300
4% 152
=3375K
Example 52. A thin rube of uniform cross-section (5 sealed

at both ends. It lies horizontally, the middle 5 cm containing Hg
and the twa equal ends conaining air gt the same pressure Fy .
When the tube is held ar an angle 60° with the vertical, the
lemgths of the aiv column above and below the mercwry are 46
and 44.3 em respectively. Calculate pressure Fy in em of Hg. (The
temperature of the svatem i5 kepe af 30°0),

¥
fl L Fo e
& ST,
5cm
Solution: _Aihur'tz'ﬂnlﬂlpﬂtiitiﬂn, let the length of air column
im tube be L cm.



2L+ 5=46+5+45cm
© L=4325¢cm

" When the tube is held at 60° with the vertical, the mercury
column will slip down,

Py + 5cos 60° =
Py —Pr=g=1.5cm!-lg D)
Fromend X, F,=4525=F, w445
4525 .
Py = s Fy (i
Fromend ¥, Py =xd325=F x40
4525
P].- 46 Pu wap (ilﬂ
Substituting the values of P, and P in equation (i) we get
Fﬂ = TS.4

Example 53. A 10cm column of aiv is trapped by g column
of He, 8cm fong, in a capillary iube horizonially fixed as shown
below, at latm pressure. Calcwlate the length of aiv column when
the tube is fived at the same temperature (a) vertically with open
end up (b)Y vertically with open end down () ar 45° with the
horizontal with open efid up.

C_ @& 1

( e
c

Solution:

o

T
b

{a) A¥ =P~

or Pla=fla

where, g = area of cross section of tube
Iy Iy = length of air column '

Py=Te+8=84cm

;, = i1 _F6x10
Y
=91 cm
Flla=Pla
(b) P, = T6-8=68cm
L-ﬂ=w—]]l?un
S

(¢} When the tube 15 held at 457 with open end up, the weight
of Hg is bome pamially by the gas and partially by the Hg.
Vertical height of Hg is 8 measure of additional pressure on gas,
ie,

J=—

2
Also Plya=Pla
£

Jo=21E"

2 P,

= 16210 53em

‘ T6+ —

2

Example 54. The sfap cock connecting two hulbs of
volume 5 [itre qid 10005 tre conlaining an ideal gas at Satm and 6
atm respectively, is opened. What is the final pressure in the two
i i_'.l".l‘.ﬁe' temperature remains the same? .

. Solution: BV, + BV, =F(F, +1,)
9% 5+ 6% 10=F, (15)

Fp =Tatm

_ where, Py = resultant pressure after mixing.

Example 55, A what temperature is the average velocity
af Oy medecule equal fo the root mean square velocity af 27°C7

TESESEAFIGR4PS)
Solution: - Tay = U

8RT  [3RT
TV T
BRT 3R x 300
™ M

T=3535TK

1=80.57°C

Example 56. The composition of the equilibrinm mixiure
Sor the equilibrivm Cl, == 20! at 1400 K may be determined
by the rate of diffusion of mixiure throwgh @ pin hole. It is found
that at 1400 K, the mivewre diffuses 1.16 times as fast as bypron
diffuses wnder the some condilions. Find the degres of
dissociation of Cly equilibvium, (I HGdeP S

Solution: Equilibrium of d:.sammhun of Cl, ma:r h-c
represented as:
- ‘33{3} = 2Cl(g)
r=0k a o
EHI ail — o lau

Total moles = a(l =)+ 2oct =all+ @)

B aMﬁz B Mu,
" allva) (1+w)
Roin _ | My
Ry, Mo
lL1g= 21+a)
Mg,
(1.16)" x 71

—l=0, x=01374
B4



