e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject:Mathematics

Title/Heading:Groups:definition &elementary properties

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

Groups:Definition &Elementary pro perties

Definition 1

A **group** $\langle G, * \rangle$ is a set G, closed under a binary operation *, such that the following axioms are satisfied.

1. Associativity: $(a*b)*c = a*(b*c), \forall a,b,c \in G$

- 2. **Existence of identity element**: There is an element e in G such that $e*x=x*e=x, \forall x\in G$.
- 3. Existence of inverse element: For each $a \in G$, there is an element $a' \in G$ such that a * a' = a' * a = e.

Here, a' is called the **inverse** of a.

abelian group:definition

A group G is **abelian** if its binary operation is commutative.

A group that is not abelian is called **nonabelian**.

ti-

Cı

(

Remark.

In a group G, the identity element and inverse of each element are unique. For each $a \in G$, the inverse of a is denoted by a^{-1} .

Example:

- 1. The sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} under addition are abelian groups.
- 2. The sets $\mathbb{Q}^+, \mathbb{R}^+, \mathbb{Q}^*, \mathbb{R}^*$, and \mathbb{C}^* under multiplication are abelian groups.
- 3. The set \mathbb{Z}^+ under addition is *not* a group, since it has no identity element for + in \mathbb{Z}^+ .
- 4. The set $\mathbb{Z}^+ \cup \{0\}$ under addition is *not* a group, even if it has an identity element 0, but no inverse for 1.
- 5. The set \mathbb{Z}^+ under multiplication is *not* a group. It has an identity element 1, but no inverse for 2.

- 6. The set $M_n(\mathbb{R})$ under matrix addition is an abelian group. The zero matrix is the identity element.
- 7. The set $M_n(\mathbb{R})$ under matrix multiplication is *not* a group, since the zero matrix has no multiplicative inverse.

Problem

Let $\langle G, * \rangle$ be a group. For $a, b \in G$, prove that $(a * b)^{-1} = b^{-1} * a^{-1}$

Solution.

We have $(a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = a*a^{-1} = e$. Since the inverse of any element in a group is unique, this shows that $(a*b)^{-1} = b^{-1}*a^{-1}$.

Problem

Let * be defined on \mathbb{Q}^+ by $a*b=\frac{ab}{2}$. Prove that \mathbb{Q}^+ is an abelian group under *.

Solution.

It is clear that \mathbb{Q}^+ is closed under *. Also, $(a*b)*c = a*(b*c) = \frac{abc}{4}$, $\forall a,b,c\in\mathbb{Q}^+$, showing that * is associative.

* is commutative, since $a*b=b*a=\frac{ab}{2}, \ \forall a,b\in\mathbb{Q}^+$. If e is the identity for *, then $a*e=a \implies \frac{ae}{2}=a \implies e=2$. Finally, computation shows that $a^{-1}=\frac{4}{a}, \ \forall a\in\mathbb{Q}^+$.

Theorem .

In a group G, with binary operation *, the left and right cancellation laws holds. i.e., $a*b=a*c \implies b=c$ and $b*a=c*a \implies b=c$, $\forall a,b,c\in G$.

Proof.

Suppose a*b=a*c. Multiplying from the left with a^{-1} on both sides, we get $a^{-1}*(a*b)=a^{-1}*(a*c)$. Using associativity, $(a^{-1}*a)*b=(a^{-1}*a)*c \implies e*b=e*c \implies b=c$. Similarly, from b*a=c*a, we get b=c.

Theorem

If G is a group with binary operation *, and if $a, b \in G$ the linear equations a * x = b and y * a = b have unique solutions, x, y in G.

Remark.

A set together with an associative binary operation is called a **semigroup**. A **monoid** is a semigroup that has an identity element for the binary operation.

Note that a group is both a semigroup and a monoid.

Note that there is only one group of a single element, namely $\{e\}$ with binary operation e*e=e, up to isomorphism. By looking at the table representations, we can conclude that there is only one group of two elements (or three elements) up to isomorphism. In the next section, we will show that there exists two non isomorphic group structures on a set of four elements.

Problem

Let $S = \mathbb{R} \setminus \{-1\}$. Define * on S by a * b = a + b + ab.

- (a) Show that * is a binary operation on S.
- **(b)** Show that $\langle S, * \rangle$ is a group.
- (c) Find the solution of the equation 2 * x * 3 = 7 in S.

Solution.

- (a) We must show that S is closed under *, that is, that $a+b+ab \neq -1$ for $a,b \in S$. Now a+b+ab=-1 if and only if 0=ab+a+b+1=(a+1)(b+1). This is the case if and only if either a=-1 or b=-1, which is not the case for $a,b \in S$.
- (b) We have a * (b * c) = a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc) = a + b + c + ab + ac + bc + abc and (a * b) * c = (a + b + ab) * c = (a + b + ab) + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc. Thus * is associative. Note that 0 acts as identity element for *, since 0 * a = a * 0 = a.

Also, $\frac{-a}{a+1}$ acts as inverse of a, for $a * \frac{-a}{a+1} = a + \frac{-a}{a+1} + a\frac{-a}{a+1} + 1 = \frac{a(a+1) - a - a^2}{a+1} = \frac{0}{a+1} = 0$. Thus $\langle S, * \rangle$ is a group.

(c) Because the operation is commutative, 2 * x * 3 = 2 * 3 * x = 11 * x. Now the inverse of 11 is $\frac{-11}{12}$, by Part(b). From, 11 * x = 7, we obtain $x = \frac{-11}{12} * 7 = \frac{-11}{12} + 7 + \frac{-11}{12} 7 = \frac{-11 + 84 - 77}{12} = \frac{-4}{12} = \frac{-1}{3}$.

Problem

Show that if G is a finite group with identity e and with an even number of elements, then there is $a \neq e$ in G such that a * a = e.

Solution.

Let $S = \{x \in G \mid x^{-1} \neq x\}$. Then S has an even number of elements, because its elements can be grouped in pairs x, x^{-1} . Because G has an even number of elements, the number of elements in G but not in S (the set G - S) must be even. The set G - S is nonempty because it contains e. Thus there is at least one element of G - S other than e, that is, at least one element other than e that is its own inverse.

Problem 4

Let G be a group with a finite number of elements. Show that for any $a \in G$, there exists an $n \in \mathbb{Z}^+$ such that $a^n = e$.

Solution.

Let G has m elements. Then the elements $e, a, a^2, a^3, ..., a^m$ are not all different, since G has only m elements. If one of $a, a^2, a^3, ..., a^m$ is e, then we are done. If not, then we must have $a^i = a^j$ where i < j. Repeated left cancellation of a yields $e = a^{j-i}$.

Problem

Show that if $(a * b)^2 = a^2 * b^2$ for all a, b in a group G, then G is abelian.

Solution.

We have (a*b)*(a*b) = (a*a)*(b*b), so a*[b*(a*b)] = a*[a*(b*b)] and left cancellation yields b*(a*b) = a*(b*b). Then (b*a)*b = (a*b)*b and right cancellation yields b*a = a*b. Thus G is abelian.

Problem

Let G be a group and let g be one fixed element of G. Show that the map i_g defined by $i_g(x) = gxg^{-1}$ for all x in G, is an isomorphism of G with itself.

Solution.

Let $a, b \in G$. If $g * a * g^{-1} = g * b * g^{-1}$, then a = b by group cancellation, so i_g is a one-to-one map. Because $i_g(g^{-1} * a * g) = g * g^{-1} * a * g * g^{-1} = a$, we see that i_g maps G onto G. We have $i_g(a * b) = g * a * b * g^{-1} = g * a * (g^{-1} * g) * b * g^{-1} = (g * a * g^{-1}) * (g * b * g^{-1}) = i_g(a) * i_g(b)$, so i_g satisfies the homomorphism property also, and is thus an isomorphism.