B.Sc. (Honours) Part-I Paper-IA **Topic: Bronsted-Lowry Concept** UG Subject-Chemistry

> Dr. Laxman Singh Asst. Professor Department of Chemistry R.R.S. College (PPU) (Mokama, Patna)

Acid & Base

Acids and bases can be classified on the basis of their properties.

Acids:

- (i) They are sour in taste.
- (ii) They react with some metals and produce hydrogen
- (iii)They react with carbonate (Na₂CO₃) and bicarbonate (NaHCO₃) and produce CO₂:
- (iv)Solution of acids in water conducts electricity.
- (v) They change the colour of litmus from blue to red.

Base:

- (i) They have bitter taste.
- (ii) They change colour of litmus from red to blue.
- (iii) They are slippery in nature.
- (iv) Aqueous base solution conducts electricity.

Bronsted–Lowry acids and bases Concept: Bronsted in 1923 proposed that a substance capable of donating a proton to any substance is acid and a base can be defined as a species capable of accepting proton from any other substance.

HCl $_{(aq)} \rightarrow H^+ _{(aq)} + Cl^- _{(aq)}$ Bronsted acid NH₃ + H⁺ \rightarrow NH₄⁺ Bronsted base

There are three types of acids and bases according to Bronsted-Lowry listed in table 1.

Table 1	Bronsted -I	Lowry	acids	and	bases
I GOIC I					

Туре	Acid	Base
Molecular	HCl, HBr, HClO ₄ , H ₂ SO ₄ ,	NH ₃ , N ₂ H ₄ , amines,
	H_3PO_4, H_2O	H ₂ O
Cationic	NH_4^+ , $[Fe(H_2O)_6]^{3+}$,	$[Fe(H_2O)_5(OH)]^{2+}$
	$[Al(H_2O)_6]^{3+}$	$[Al(H_2O)_5(OH)]^{2+}$
Anionic	HS^- , HCO_3^- , HSO_4^- ,	Cl⁻, Br⁻, OH⁻,
	$H_2PO_4^-$	$HSO_{4}, CO_{3}, SO_{4}^{2-}$

Acids:

(i) Molecular acids HCl, H₂SO₄, CH₃ COOH

HCl ➡ Cl + H

 $H_2SO_4 \implies HSO^- + H^+$

 $CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$

(ii) Anion acids

 $HSO_4^- \Longrightarrow SO_4^{2-} + H^+$ (Bisulphate)

(iii) Cation acids

 $H_3O^+ \rightleftharpoons H_2O + H^+$ Hydroxonium

Bases:

(i) Molecular bases

$$CH_3NH_2 + H^* \Longrightarrow CH_3NH_3^+(Cations)$$

(ii) Anion bases
$$(OH^-, S^{2-}, CO_3^{2-}, CI^-, Br^-, NO_3^{-})$$

 $OH^- + H^+ \rightleftharpoons H_2O$ (Neutral molecule)

(iii) Cationic bases

$$[Fe (H_2O)_5OH] \xrightarrow{2^{\circ}H^{\circ}} (Fe (H_2O)_6)^{\circ}$$

Conjugate acids and bases:

Bronsted-Lowry also gave the concept of conjugate acid base pair. Conjugate base is a species that remains when one proton has been removed from the acid.

 $Acid_1 \Longrightarrow H^+ + base$ Conjugate base

Conjugate acid results from the addition of proton to a base

$$Base_2 \Longrightarrow H^* \Longrightarrow acid_2$$

Conjugate acid

An acid base pair which is different by a proton is called conjugate acid base pair.

The sum of these two reactions is

 $Acid_1 + base_2 \implies Acid_2 + base_1$

Therefore, any acid-base reaction involves two acids and two bases. These acids and bases are called conjugate pairs.

$$\begin{array}{rrrr} HCl &+ H_2O \rightleftharpoons H_3O &+ Cl & 3\\ Acid_1 & Base_2 & Acid_2 & Base_1 \end{array}$$

D -1-4	- 4	- C		4 1 -1	1	
Relative	strength	OT CO	niiiga	te acid -	– pase	pairs.
	ou ongoi	· · · ·			0.000	perio

	0	3 E I	
	Acid	Conjugate base	
	HClO ₄	ClO_4^-	
	HI	I ⁻	
Strong acids	HBr	Br ⁻	Increasing
	HCl	Cl⁻	base
	H_2SO_4	HSO_4^-	Strength
	HNO ₃	NO_3^-	

	H ₂ SO ₄ HNO ₃	HSO_4^- NO_3^-	Strength	
			Ļ	
		H_3O^+	H ₂ O	
		HSO ₄ ⁻	SO_4^{2-}	ļ
Weak acids		HF	\mathbf{F}^{-}	
		HNO ₂	$\mathrm{NO_2}^-$	
		НСООН	HCOO ⁻	l
		CH ₃ COOH	HCOO	
		$\mathrm{NH_4}^+$	NH_3	
		HCN	CN^{-}	

H_2O	OH^-
NH ₃	$\mathrm{NH_2}^-$

Acids stronger than H₃O⁺, react with water to produce H₃O⁺ and their conjugate bases.

$$HCl + H_2O \Longrightarrow H_3O^+ + Cl_{(aq)}^-$$

• Acids weaker than H₃O⁺, react with water to a much smaller extent. Bases like O²⁻ (oxide) stronger than OH⁻, react with water to produce OH⁻.

 $O^{2-}(aq) + H_2O \rightarrow 2OH^-(aq)$

Therefore, oxide ion does not exist in solution.

 $NH_2^- + H_2O \longrightarrow NH_3 + OH^-$

Merits of Bronsted–Lowry Concept:

- 1. This concept can explain the acidic/basic nature of a substance in aqueous (H₂O) as well as in other protonic solvents like liq. NH₃, liq. HF.
- This concept also explains acid base reaction taking place in gaseous phase.

Acid Base Acid Base HCl (g) + NH₃ (g) \implies NH₄⁺ + Cl⁻ or NH₄⁺ Cl⁻

Limitations of Bronsted–Lowry concept:

This concept cannot explain the acid-base reactions taking place in nonprotonic solvents, like liq. SO₂, liq. BF₃, BrF₃, AlCl₃, POCl₃ etc. in which no proton transfer takes place.

Acid		Base		Acid]	Base
SO_2	+	SO_2	\rightleftharpoons	SO ²⁺ -	+ ;	SO ₄ ²⁻
BrF ₃	+	BrF ₃	\rightleftharpoons	BrF_4^+	+	BrF_2^-